Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2298507

ABSTRACT

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Middle Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bayes Theorem , COVID-19/therapy , Renin-Angiotensin System/drug effects , Hospitalization , COVID-19 Drug Treatment/methods , Critical Illness , Receptors, Chemokine/antagonists & inhibitors
3.
JAMA ; 329(1): 39-51, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2287001

ABSTRACT

Importance: The longer-term effects of therapies for the treatment of critically ill patients with COVID-19 are unknown. Objective: To determine the effect of multiple interventions for critically ill adults with COVID-19 on longer-term outcomes. Design, Setting, and Participants: Prespecified secondary analysis of an ongoing adaptive platform trial (REMAP-CAP) testing interventions within multiple therapeutic domains in which 4869 critically ill adult patients with COVID-19 were enrolled between March 9, 2020, and June 22, 2021, from 197 sites in 14 countries. The final 180-day follow-up was completed on March 2, 2022. Interventions: Patients were randomized to receive 1 or more interventions within 6 treatment domains: immune modulators (n = 2274), convalescent plasma (n = 2011), antiplatelet therapy (n = 1557), anticoagulation (n = 1033), antivirals (n = 726), and corticosteroids (n = 401). Main Outcomes and Measures: The main outcome was survival through day 180, analyzed using a bayesian piecewise exponential model. A hazard ratio (HR) less than 1 represented improved survival (superiority), while an HR greater than 1 represented worsened survival (harm); futility was represented by a relative improvement less than 20% in outcome, shown by an HR greater than 0.83. Results: Among 4869 randomized patients (mean age, 59.3 years; 1537 [32.1%] women), 4107 (84.3%) had known vital status and 2590 (63.1%) were alive at day 180. IL-6 receptor antagonists had a greater than 99.9% probability of improving 6-month survival (adjusted HR, 0.74 [95% credible interval {CrI}, 0.61-0.90]) and antiplatelet agents had a 95% probability of improving 6-month survival (adjusted HR, 0.85 [95% CrI, 0.71-1.03]) compared with the control, while the probability of trial-defined statistical futility (HR >0.83) was high for therapeutic anticoagulation (99.9%; HR, 1.13 [95% CrI, 0.93-1.42]), convalescent plasma (99.2%; HR, 0.99 [95% CrI, 0.86-1.14]), and lopinavir-ritonavir (96.6%; HR, 1.06 [95% CrI, 0.82-1.38]) and the probabilities of harm from hydroxychloroquine (96.9%; HR, 1.51 [95% CrI, 0.98-2.29]) and the combination of lopinavir-ritonavir and hydroxychloroquine (96.8%; HR, 1.61 [95% CrI, 0.97-2.67]) were high. The corticosteroid domain was stopped early prior to reaching a predefined statistical trigger; there was a 57.1% to 61.6% probability of improving 6-month survival across varying hydrocortisone dosing strategies. Conclusions and Relevance: Among critically ill patients with COVID-19 randomized to receive 1 or more therapeutic interventions, treatment with an IL-6 receptor antagonist had a greater than 99.9% probability of improved 180-day mortality compared with patients randomized to the control, and treatment with an antiplatelet had a 95.0% probability of improved 180-day mortality compared with patients randomized to the control. Overall, when considered with previously reported short-term results, the findings indicate that initial in-hospital treatment effects were consistent for most therapies through 6 months.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Follow-Up Studies , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Critical Illness/therapy , Bayes Theorem , COVID-19 Serotherapy , Adrenal Cortex Hormones/therapeutic use , Anticoagulants/adverse effects , Receptors, Interleukin-6
4.
mBio ; 14(2): e0035623, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2255307

ABSTRACT

Bacillus Calmette-Guerin (BCG) vaccination has been hypothesized to reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, severity, and/or duration via trained immunity induction. Health care workers (HCWs) in nine Dutch hospitals were randomized to BCG or placebo vaccination (1:1) in March and April 2020 and followed for 1 year. They reported daily symptoms, SARS-CoV-2 test results, and health care-seeking behavior via a smartphone application, and they donated blood for SARS-CoV-2 serology at two time points. A total of 1,511 HCWs were randomized and 1,309 analyzed (665 BCG and 644 placebo). Of the 298 infections detected during the trial, 74 were detected by serology only. The SARS-CoV-2 incidence rates were 0.25 and 0.26 per person-year in the BCG and placebo groups, respectively (incidence rate ratio, 0.95; 95% confidence interval, 0.76 to 1.21; P = 0.732). Only three participants required hospitalization for SARS-CoV-2. The proportions of participants with asymptomatic, mild, or moderate infections and the mean infection durations did not differ between randomization groups. In addition, unadjusted and adjusted logistic regression and Cox proportional hazards models showed no differences between BCG and placebo vaccination for any of these outcomes. The percentage of participants with seroconversion (7.8% versus 2.8%; P = 0.006) and mean SARS-CoV-2 anti-S1 antibody concentration (13.1 versus 4.3 IU/mL; P = 0.023) were higher in the BCG than placebo group at 3 months but not at 6 or 12 months postvaccination. BCG vaccination of HCWs did not reduce SARS-CoV-2 infections nor infection duration or severity (ranging from asymptomatic to moderate). In the first 3 months after vaccination, BCG vaccination may enhance SARS-CoV-2 antibody production during SARS-CoV-2 infection. IMPORTANCE While several BCG trials in adults were conducted during the 2019 coronavirus disease epidemic, our data set is the most comprehensive to date, because we included serologically confirmed infections in addition to self-reported positive SARS-CoV-2 test results. We also collected data on symptoms for every day during the 1-year follow-up period, which enabled us to characterize infections in detail. We found that BCG vaccination did not reduce SARS-CoV-2 infections nor infection duration or severity but may have enhanced SARS-CoV-2 antibody production during SARS-CoV-2 infection in the first 3 months after vaccination. These results are in agreement with other BCG trials that reported negative results (but did not use serological endpoints), except for two trials in Greece and India that reported positive results but had few endpoints and included endpoints that were not laboratory confirmed. The enhanced antibody production is in agreement with prior mechanistic studies but did not translate into protection from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , BCG Vaccine , Vaccination , Health Personnel
5.
Front Immunol ; 14: 980711, 2023.
Article in English | MEDLINE | ID: covidwho-2259363

ABSTRACT

Background and objective: A recent study has suggested that circadian rhythm has an important impact on the immunological effects induced by Bacillus Calmette-Guérin (BCG) vaccination. The objective of this study was to evaluate whether the timing of BCG vaccination (morning or afternoon) affects its impact on severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infections and clinically relevant respiratory tract infections (RTIs). Methods: This is a post-hoc analysis of the BCG-CORONA-ELDERLY (NCT04417335) multicenter, placebo-controlled trial, in which participants aged 60 years and older were randomly assigned to vaccination with BCG or placebo, and followed for 12 months. The primary endpoint was the cumulative incidence of SARS-CoV-2 infection. To assess the impact of circadian rhythm on the BCG effects, participants were divided into four groups: vaccinated with either BCG or placebo in the morning (between 9:00h and 11:30h) or in the afternoon (between 14:30h and 18:00h). Results: The subdistribution hazard ratio of SARS-CoV-2 infection in the first six months after vaccination was 2.394 (95% confidence interval [CI], 0.856-6.696) for the morning BCG group and 0.284 (95% CI, 0.055-1.480) for the afternoon BCG group. When comparing those two groups, the interaction hazard ratio was 8.966 (95% CI, 1.366-58.836). In the period from six months until 12 months after vaccination cumulative incidences of SARS-CoV-2 infection were comparable, as well as cumulative incidences of clinically relevant RTI in both periods. Conclusion: Vaccination with BCG in the afternoon offered better protection against SARS-CoV-2 infections than BCG vaccination in the morning in the first six months after vaccination.


Subject(s)
COVID-19 , Mycobacterium bovis , Respiratory Tract Infections , Aged , Humans , Middle Aged , BCG Vaccine , SARS-CoV-2 , Circadian Rhythm , Vaccination
6.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases ; 2023.
Article in English | EuropePMC | ID: covidwho-2232000

ABSTRACT

Objectives To test whether BCG vaccination would reduce the incidence of COVID-19 and other respiratory tract infections in older adults with one or more comorbidities. Methods Community-dwelling adults over 60 years old with one or more underlying comorbidities and no contra-indications for BCG vaccination were randomized 1:1 to BCG or placebo vaccination and followed for six months. The primary endpoint was self-reported test-confirmed COVID-19 incidence. Secondary endpoints included COVID-19 hospital admissions and clinically relevant RTI (i.e. RTI including but not limited to COVID-19 requiring medical intervention). COVID-19 and clinically relevant RTI episodes were adjudicated. Incidences were compared using Fine and Gray regression, accounting for competing events. Results A total of 6,112 participants with a median age of 69 years (inter-quartile range 65-74) and median of 2 (inter-quartile range 1-3) comorbidities were randomized to BCG (n=3,058) or placebo (n=3,054) vaccination. COVID-19 infections were reported by 129 BCG recipients compared to 115 placebo recipients (hazard ratio (HR) 1.12;95% confidence interval (CI) 0.87-1.44). COVID-19-related hospitalization occurred in 18 BCG and 21 placebo recipients (HR 0.86;95% CI 0.46-1.61). During the study period 13 BCG recipients compared to 18 placebo recipients died (HR 0.71;95% CI 0.35 - 1.43) of which 11 deaths (35%) were COVID-19 related six in the placebo group and five in the BCG group. Clinically relevant RTI was reported by 66 BCG and 72 placebo recipients (HR 0.92;95% CI 0.66-1.28). Conclusion BCG vaccination does not protect older adults with comorbidities against COVID-19, COVID-19 hospitalization or clinically relevant RTI.

7.
Clin Microbiol Infect ; 29(6): 781-788, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2220568

ABSTRACT

OBJECTIVES: To test whether Bacillus Calmette-Guérin (BCG) vaccination would reduce the incidence of COVID-19 and other respiratory tract infections (RTIs) in older adults with one or more comorbidities. METHODS: Community-dwelling adults aged 60 years or older with one or more underlying comorbidities and no contraindications to BCG vaccination were randomized 1:1 to BCG or placebo vaccination and followed for 6 months. The primary endpoint was a self-reported, test-confirmed COVID-19 incidence. Secondary endpoints included COVID-19 hospital admissions and clinically relevant RTIs (i.e. RTIs including but not limited to COVID-19 requiring medical intervention). COVID-19 and clinically relevant RTI episodes were adjudicated. Incidences were compared using Fine-Gray regression, accounting for competing events. RESULTS: A total of 6112 participants with a median age of 69 years (interquartile range, 65-74) and median of 2 (interquartile range, 1-3) comorbidities were randomized to BCG (n = 3058) or placebo (n = 3054) vaccination. COVID-19 infections were reported by 129 BCG recipients compared to 115 placebo recipients [hazard ratio (HR), 1.12; 95% CI, 0.87-1.44]. COVID-19-related hospitalization occurred in 18 BCG and 21 placebo recipients (HR, 0.86; 95% CI, 0.46-1.61). During the study period, 13 BCG recipients died compared with 18 placebo recipients (HR, 0.71; 95% CI, 0.35-1.43), of which 11 deaths (35%) were COVID-19-related: six in the placebo group and five in the BCG group. Clinically relevant RTI was reported by 66 BCG and 72 placebo recipients (HR, 0.92; 95% CI, 0.66-1.28). DISCUSSION: BCG vaccination does not protect older adults with comorbidities against COVID-19, COVID-19 hospitalization, or clinically relevant RTIs.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , BCG Vaccine , Vaccination , Hospitalization , Incidence
9.
Clin Microbiol Infect ; 28(9): 1278-1285, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1872991

ABSTRACT

OBJECTIVES: The COVID-19 pandemic increases healthcare worker (HCW) absenteeism. The bacillus Calmette-Guérin (BCG) vaccine may provide non-specific protection against respiratory infections through enhancement of trained immunity. We investigated the impact of BCG vaccination on HCW absenteeism during the COVID-19 pandemic. METHODS: HCWs exposed to COVID-19 patients in nine Dutch hospitals were randomized to BCG vaccine or placebo in a 1:1 ratio, and followed for one year using a mobile phone application. The primary endpoint was the self-reported number of days of unplanned absenteeism for any reason. Secondary endpoints included documented COVID-19, acute respiratory symptoms or fever. This was an investigator-funded study, registered at ClinicalTrials.gov (NCT03987919). RESULTS: In March/April 2020, 1511 HCWs were enrolled. The median duration of follow-up was 357 person-days (interquartile range [IQR], 351 to 361). Unplanned absenteeism for any reason was observed in 2.8% of planned working days in the BCG group and 2.7% in the placebo group (adjusted relative risk 0.94; 95% credible interval, 0.78-1.15). Cumulative incidences of documented COVID-19 were 14.2% in the BCG and 15.2% in the placebo group (adjusted hazard ratio (aHR) 0.94; 95% confidence interval (CI), 0.72-1.24). First episodes of self-reported acute respiratory symptoms or fever occurred in 490 (66.2%) and 443 (60.2%) participants, respectively (aHR: 1.13; 95% CI, 0.99-1.28). Thirty-one serious adverse events were reported (13 after BCG, 18 after placebo), none considered related to study medication. CONCLUSIONS: During the COVID-19 pandemic, BCG-vaccination of HCW exposed to COVID-19 patients did not reduce unplanned absenteeism nor documented COVID-19.


Subject(s)
COVID-19 , Mycobacterium bovis , Absenteeism , BCG Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Health Personnel , Humans , Pandemics/prevention & control , SARS-CoV-2
10.
Eur J Epidemiol ; 37(5): 549-561, 2022 May.
Article in English | MEDLINE | ID: covidwho-1872578

ABSTRACT

Household transmission studies are useful to quantify SARS-CoV-2 transmission dynamics. We conducted a remote prospective household study to quantify transmission, and the effects of subject characteristics, household characteristics, and implemented infection control measures on transmission. Households with a laboratory-confirmed SARS-CoV-2 index case were enrolled < 48 h following test result. Follow-up included digitally daily symptom recording, regular nose-throat self-sampling and paired dried blood spots from all household members. Samples were tested for virus detection and SARS-CoV-2 antibodies. Secondary attack rates (SARs) and associated factors were estimated using logistic regression. In 276 households with 920 participants (276 index cases and 644 household members) daily symptom diaries and questionnaires were completed by 95%, and > 85% completed sample collection. 200 secondary SARS-CoV-2 infections were detected, yielding a household SAR of 45.7% (95% CI 39.7-51.7%) and per-person SAR of 32.6% (95%CI: 28.1-37.4%). 126 (63%) secondary cases were detected at enrollment. Mild (aRR = 0.57) and asymptomatic index cases (aRR = 0.29) were less likely to transmit SARS-CoV-2, compared to index cases with an acute respiratory illness (p = 0.03 for trend), and child index cases (< 12 years aRR = 0.60 and 12-18 years aRR = 0.85) compared to adults (p = 0.03 for trend). Infection control interventions in households had no significant effect on transmission. We found high SARs with the majority of transmissions occuring early after SARS-CoV-2 introduction into the household. This may explain the futile effect of implemented household measures. Age and symptom status of the index case influence secondary transmission. Remote, digitally-supported study designs with self-sampling are feasible for studying transmission under pandemic restrictions.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Family Characteristics , Humans , Pandemics/prevention & control , Prospective Studies
11.
Clin Infect Dis ; 75(2): 221-229, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-1852979

ABSTRACT

BACKGROUND: We aimed to determine the noninferiority of fosfomycin compared to ciprofloxacin as an oral step-down treatment for Escherichia coli febrile urinary tract infections (fUTIs) in women. METHODS: This was a double-blind, randomized, controlled trial in 15 Dutch hospitals. Adult women who were receiving 2-5 days of empirical intravenous antimicrobials for E. coli fUTI were assigned to step-down treatment with once-daily 3g fosfomycin or twice-daily 0.5g ciprofloxacin for 10 days of total antibiotic treatment. For the primary end point, clinical cure at days 6-10 post-end of treatment (PET), a noninferiority margin of 10% was chosen. The trial was registered on Trialregister.nl (NTR6449). RESULTS: After enrollment of 97 patients between 2017 and 2020, the trial ended prematurely because of the coronavirus disease 2019 pandemic. The primary end point was met in 36 of 48 patients (75.0%) assigned to fosfomycin and 30 of 46 patients (65.2%) assigned to ciprofloxacin (risk difference [RD], 9.6%; 95% confidence interval [CI]: -8.8% to 28.0%). In patients assigned to fosfomycin and ciprofloxacin, microbiological cure at days 6-10 PET occurred in 29 of 37 (78.4%) and 33 of 35 (94.3%; RD, -16.2%; 95% CI: -32.7 to -0.0%). Any gastrointestinal adverse event was reported in 25 of 48 (52.1%) and 14 of 46 (30.4%) patients (RD, 20.8%; 95% CI: 1.6% to 40.0%), respectively. CONCLUSIONS: Fosfomycin is noninferior to ciprofloxacin as oral step-down treatment for fUTI caused by E. coli in women. Fosfomycin use is associated with more gastrointestinal events. CLINICAL TRIAL REGISTRATION: Trial NL6275 (NTR6449).


Subject(s)
COVID-19 , Escherichia coli Infections , Fosfomycin , Urinary Tract Infections , Adult , Anti-Bacterial Agents/adverse effects , Ciprofloxacin/therapeutic use , Double-Blind Method , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/drug therapy , Female , Fever/drug therapy , Fosfomycin/adverse effects , Humans , Urinary Tract Infections/microbiology
12.
JAMA ; 327(13): 1247-1259, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801957

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Critical Illness , Platelet Aggregation Inhibitors , Venous Thromboembolism , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Bayes Theorem , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Respiration, Artificial , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
13.
J Thromb Haemost ; 20(5): 1206-1212, 2022 05.
Article in English | MEDLINE | ID: covidwho-1745875

ABSTRACT

BACKGROUND: Pulmonary embolism (PE) occurs in one-third of critically-ill COVID-19 patients. Although prior studies identified several pathways contributing to thrombogenicity, it is unknown whether this is COVID-19-specific or also occurs in ARDS patients with another infection. OBJECTIVE: To compare pathway activity among patients having COVID-19 with PE (C19PE+), COVID-19 without PE (C19PE-), and influenza-associated ARDS (IAA) using a targeted proteomics approach. METHODS: We exploited an existing biorepository containing daily plasma samples to carefully match C19PE+ cases to C19PE- and IAA controls on mechanical ventilation duration, PEEP, FiO2, and cardiovascular-SOFA (n = 15 per group). Biomarkers representing various thrombosis pathways were measured using proximity extension- and ELISA-assays. Summed z-scores of individual biomarkers were used to represent total pathway activity. RESULTS: We observed no relevant between-group differences among 22 biomarkers associated with activation of endothelium, platelets, complement, coagulation, fibrinolysis or inflammation, except sIL-1RT2 and sST2, which were lower in C19PE- than IAA (log2-Foldchange -0.67, p = .022 and -1.78, p = .022, respectively). However, total pathway analysis indicated increased activation of endothelium (z-score 0.2 [-0.3-1.03] vs. 0.98 [-2.5--0.3], p = .027), platelets (1.0 [-1.3-3.0] vs. -3.3 [-4.1--0.6], p = .023) and coagulation (0.8 [-0.5-2.0] vs. -1.0 [-1.6-1.0], p = .023) in COVID-19 patients (C19PE+/C19PE- groups combined) compared to IAA. CONCLUSION: We observed only minor differences between matched C19PE+, C19PE-, and IAA patients, which suggests individual biomarkers mostly reflect disease severity. However, analysis of total pathway activity suggested upregulation of some distinct processes in COVID-19 could be etiologically related to increased PE-risk.


Subject(s)
COVID-19 , Influenza, Human , Pulmonary Embolism , Respiratory Distress Syndrome , Thrombosis , Biomarkers , COVID-19/complications , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Proteomics , Pulmonary Embolism/diagnosis , SARS-CoV-2
14.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

IMPORTANCE: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use , COVID-19 Serotherapy
15.
BMC Med ; 19(1): 211, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1470617

ABSTRACT

BACKGROUND: Emergence of more transmissible SARS-CoV-2 variants requires more efficient control measures to limit nosocomial transmission and maintain healthcare capacities during pandemic waves. Yet the relative importance of different strategies is unknown. METHODS: We developed an agent-based model and compared the impact of personal protective equipment (PPE), screening of healthcare workers (HCWs), contact tracing of symptomatic HCWs and restricting HCWs from working in multiple units (HCW cohorting) on nosocomial SARS-CoV-2 transmission. The model was fit on hospital data from the first wave in the Netherlands (February until August 2020) and assumed that HCWs used 90% effective PPE in COVID-19 wards and self-isolated at home for 7 days immediately upon symptom onset. Intervention effects on the effective reproduction number (RE), HCW absenteeism and the proportion of infected individuals among tested individuals (positivity rate) were estimated for a more transmissible variant. RESULTS: Introduction of a variant with 56% higher transmissibility increased - all other variables kept constant - RE from 0.4 to 0.65 (+ 63%) and nosocomial transmissions by 303%, mainly because of more transmissions caused by pre-symptomatic patients and HCWs. Compared to baseline, PPE use in all hospital wards (assuming 90% effectiveness) reduced RE by 85% and absenteeism by 57%. Screening HCWs every 3 days with perfect test sensitivity reduced RE by 67%, yielding a maximum test positivity rate of 5%. Screening HCWs every 3 or 7 days assuming time-varying test sensitivities reduced RE by 9% and 3%, respectively. Contact tracing reduced RE by at least 32% and achieved higher test positivity rates than screening interventions. HCW cohorting reduced RE by 5%. Sensitivity analyses show that our findings do not change significantly for 70% PPE effectiveness. For low PPE effectiveness of 50%, PPE use in all wards is less effective than screening every 3 days with perfect sensitivity but still more effective than all other interventions. CONCLUSIONS: In response to the emergence of more transmissible SARS-CoV-2 variants, PPE use in all hospital wards might still be most effective in preventing nosocomial transmission. Regular screening and contact tracing of HCWs are also effective interventions but critically depend on the sensitivity of the diagnostic test used.


Subject(s)
COVID-19 , Cross Infection , COVID-19/prevention & control , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/prevention & control , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Netherlands/epidemiology , SARS-CoV-2
16.
Intensive Care Med ; 47(8): 867-886, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1305144

ABSTRACT

PURPOSE: To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. RESULTS: We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (- 1 to 15), 0 (- 1 to 9) and-1 (- 1 to 7), respectively, compared to 6 (- 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively). CONCLUSION: Among critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Antiviral Agents/therapeutic use , Bayes Theorem , Critical Illness , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
17.
Nat Commun ; 12(1): 1614, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132071

ABSTRACT

The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Basic Reproduction Number/prevention & control , Basic Reproduction Number/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Child , Child, Preschool , Cross-Sectional Studies , Female , Holidays , Hospitalization , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Biological , Models, Statistical , Netherlands/epidemiology , Pandemics/prevention & control , Schools , Seroepidemiologic Studies , Young Adult
18.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
19.
EClinicalMedicine ; 31: 100677, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-957035

ABSTRACT

BACKGROUND: RT-qPCR is the reference test for identification of active SARS-CoV-2 infection, but is associated with diagnostic delay. Antigen detection assays can generate results within 20 min and outside of laboratory settings. Yet, their diagnostic test performance in real life settings has not been determined. METHODS: The diagnostic value of the Panbio™ COVID-19 Ag Rapid Test (Abbott), was determined in  comparison to RT-qPCR (Seegene Allplex) in community-dwelling mildly symptomatic subjects in a medium (Utrecht, the Netherlands) and high endemic area (Aruba), using two concurrently obtained nasopharyngeal swabs.Findings: 1367 and 208 subjects were enrolled in Utrecht and Aruba, respectively. SARS-CoV-2 prevalence, based on RT-qPCR, was 10.2% (n = 139) and 30.3% (n = 63) in Utrecht and Aruba respectively. Specificity of the Panbio™ COVID-19 Ag Rapid Test was 100% (95%CI: 99.7-100%) in both settings. Test sensitivity was 72.6% (95%CI: 64.5-79.9%) in the Netherlands and 81.0% (95% CI: 69.0-89.8%) in Aruba. Probability of false negative results was associated with RT-qPCR Ct-values, but not with duration of symptoms. Restricting RT-qPCR test positivity to Ct-values <32 yielded test sensitivities of 95.2% (95%CI: 89.3-98.5%) in Utrecht and 98.0% (95%CI: 89.2-99.95%) in Aruba. INTERPRETATION: In community-dwelling subjects with mild respiratory symptoms the Panbio™ COVID-19 Ag Rapid Test had 100% specificity, and a sensitivity above 95% for nasopharyngeal samples when using Ct-values <32 cycles as cut-off for RT-qPCR test positivity. Considering short turnaround times, user friendliness, low costs and opportunities for decentralized testing, this test can improve our efforts to control transmission of SARS-CoV-2.

20.
Lancet Public Health ; 5(8): e452-e459, 2020 08.
Article in English | MEDLINE | ID: covidwho-652598

ABSTRACT

BACKGROUND: In countries with declining numbers of confirmed cases of COVID-19, lockdown measures are gradually being lifted. However, even if most physical distancing measures are continued, other public health measures will be needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to control strategies during de-escalation of physical distancing. We aimed to identify key factors for a contact tracing strategy to be successful. METHODS: We evaluated the impact of timeliness and completeness in various steps of a contact tracing strategy using a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts (eg, household members) and casual contacts, followed by testing regardless of symptoms and isolation if testing positive, with different tracing delays and coverages. We computed effective reproduction numbers of a contact tracing strategy (RCTS) for a population with physical distancing measures and various scenarios for isolation of index cases and tracing and quarantine of their contacts. FINDINGS: For the most optimistic scenario (testing and tracing delays of 0 days and tracing coverage of 100%), and assuming that around 40% of transmissions occur before symptom onset, the model predicts that the estimated effective reproduction number of 1·2 (with physical distancing only) will be reduced to 0·8 (95% CI 0·7-0·9) by adding contact tracing. The model also shows that a similar reduction can be achieved when testing and tracing coverage is reduced to 80% (RCTS 0·8, 95% CI 0·7-1·0). A testing delay of more than 1 day requires the tracing delay to be at most 1 day or tracing coverage to be at least 80% to keep RCTS below 1. With a testing delay of 3 days or longer, even the most efficient strategy cannot reach RCTS values below 1. The effect of minimising tracing delay (eg, with app-based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective than conventional tracing alone even with 20% coverage, reducing the reproduction number by 17·6% compared with 2·5%. The proportion of onward transmissions per index case that can be prevented depends on testing and tracing delays, and given a 0-day tracing delay, ranges from up to 79·9% with a 0-day testing delay to 41·8% with a 3-day testing delay and 4·9% with a 7-day testing delay. INTERPRETATION: In our model, minimising testing delay had the largest impact on reducing onward transmissions. Optimising testing and tracing coverage and minimising tracing delays, for instance with app-based technology, further enhanced contact tracing effectiveness, with the potential to prevent up to 80% of all transmissions. Access to testing should therefore be optimised, and mobile app technology might reduce delays in the contact tracing process and optimise contact tracing coverage. FUNDING: ZonMw, Fundação para a Ciência e a Tecnologia, and EU Horizon 2020 RECOVER.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Contact Tracing/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Mobile Applications , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Public Health Practice , Quarantine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL